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Abstract

An analytical method is presented to perform the flexure–torsion coupled stochastic response analysis of
monosymmetric axially loaded Timoshenko thin-walled beam subjected to various kinds of concentrated
and distributed stochastic excitations with stationary and ergodic properties. The effects of warping
stiffness, axial force, shear deformation and rotary inertia are included in the present formulations. First,
the damped general governing differential equations of motion of axially loaded Timoshenko thin-walled
beam are developed and the free vibration analysis is performed. Once the natural frequencies and mode
shapes are obtained, mode superposition method in conjunction with receptance method is used to compute
the mean square displacement response of the axially loaded thin-walled beam. Finally, the method is
illustrated by its application to two test examples to investigate the effects of warping stiffness, axial force,
shear deformation and rotary inertia on the stochastic response of the thin-walled beams.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The thin-walled beam structures are commonly found in the design of the aircraft wings,
propeller blades, bridge decks, vehicles axles and so on, due to their outstanding properties. Since
the thin-walled beam members are widely used in aerospace, automobile and civil architecture
industries, it is important to ensure that their design is reliable and safe. The dynamic analyses of
the thin-walled beam structures also help to optimize the design and avoid future investments on
repairs. It is, therefore, essential for design engineers to evaluate the dynamic characteristics of the
thin-walled beam structures accurately.
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It is well known that when the cross-section of the beam has two symmetric axes, the shear
center and the centroid of the cross-section coincide, and all flexural and torsional vibrations are
independent of each other, this case represents no coupling at all. Then the classical Bernoulli–
Euler and/or the Timoshenko beam theory are valid. However, for a large number of practical
beams of thin-walled sections, the centroid and shear center of the cross-section are obviously
non-coincident, the above assumption is not valid. When the cross-section of the thin-walled
beam has only one symmetrical axis, the flexural vibration in the direction of the symmetrical axis
is independent of the other vibrations. But the flexural vibration in the perpendicular direction of
the symmetric axis is coupled with torsional vibration.
In spite of the practical interest of the flexure–torsion coupled thin-walled beam problems,

particularly in the context of aerospace, civil and mechanical applications, the main body of the
available investigations has devoted entirely to study the dynamic response of beams having
double symmetrical axes and structures composed of this kind of beams such as Refs. [1–4]. There
is a number of research works dealing with the free vibration characteristics of the flexure–torsion
coupled thin-walled beams [5–20]. Bishop et al. [5] studied the coupled flexural–torsional vibration
of the Timoshenko beam without the warping stiffness included. Hallauer et al. [6] and Friberg [7]
derived the exact dynamic stiffness matrix for a flexure–torsion coupled Bernoulli–Euler beam
with the warping stiffness ignored. Bishop et al. [10] extended the work of Dokumaci [9] to include
the warping stiffness term. Friberg [8] and Leung [12,13] developed the dynamic stiffness matrix of
a Vlasov beam with the shear deformation completely ignored. Dvorkin et al. [11] presented a
traditional finite element formulation of the similar problem. Banerjee et al. [14,15] derived the
analytical expressions for the coupled flexural–torsional dynamic stiffness matrix of an axially
loaded Timoshenko beam excluding the warping stiffness effect. Klausbruckner et al. [16]
investigated the vibration characteristics of the channel beams based on theoretical and
experimental study. Banerjee et al. [17] formulated an exact dynamic stiffness matrix for a
Bernoulli–Euler thin-walled beam with inclusion of the warping stiffness. Bercin et al. [18]
presented the coupled flexural–torsional vibration of the Timoshenko beam with warping stiffness
included. Tanaka et al. [19] presented the exact solution for the flexure–torsion coupled Bernoulli–
Euler beam including the warping stiffness. Hashemi et al. [20] presented a new dynamic finite
element for the axially loaded flexure–torsion coupled Bernoulli–Euler beam with the warping
stiffness omitted. All of the above studies only investigated the eigenvalue problems of the thin-
walled beams. Relatively fewer studies [21,22] are available that have been done toward the study
of the forced vibration response of the thin-walled beams subjected to deterministic or stochastic
external excitations. Chen et al. [21] employed the finite element method in conjunction with an
implicit-starting unconditionally stable methodology for the dynamic computation of elastic open
section thin-walled structures subjected to deterministic loads. The paper employed Vlasov’s
assumptions and both warping and rotary inertia are included in the developments. But two
important design parameters, namely the effects of axial force and shear deformation, were not
included in the formulations and the paper focused attention on the deterministic dynamic
response in the time domain. Eslimy-Isfahany et al. [22] developed an analytical theory to
investigate the response of a flexure–torsion coupled beam to deterministic and stochastic
excitations by using the normal mode method. Unfortunately, the authors assumed that the beam
twists according to the Saint–Venant theory and thus no allowance is made for warping stiffness
of the beam cross-section. Such an assumption can lead to large errors when calculating the
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dynamic response of a thin-walled open section beam. Also the effects of axial force, shear
deformation and rotary inertia were not included in the formulation.
In order to accurately predict the stochastic response of the thin-walled beam structures,

comprehensive structural models have to be used. In particular, shear deformation, rotatory
inertia, warping stiffness as well as flexure–torsion coupling and axial force must be included in
their modelling. The necessity of incorporating transverse shear effect arises from the fact that it is
usually important when the depth-span ratio of the thin-walled beam is relatively large. In
addition, torsion related non-uniform warping occurs when a section is restrained against out of
plane deformation and/or when a non-uniform distributed torque is applied along the length of
the beam. Therefore, the free warping assumption may result in erroneous predictions of the
behavior of cantilevered type structures. Consequently, the warping stiffness effect is incorporated
in this work.
In the previous studies of the stochastic response analysis of the flexure–torsion coupled thin-

walled beams, it seems that there is no work investigating the effects of axial force, warping
stiffness, shear deformation and rotatory inertia on the dynamic behavior of the thin-walled
beams simultaneously. This problem is presented in this paper. The stochastic flexure–torsion
coupled vibration of elastic axially loaded thin-walled beams with monosymmetrical cross-section
subjected to various kinds of concentrated and distributed stochastic excitations with stationary
and ergodic properties is investigated. The effects due to axial force and warping stiffness on the
stochastic response of the thin-walled beams are especially interested. Furthermore, the effects due
to shear deformation and rotatory inertia are also of interest here. First, an analytical method for
determining natural frequencies and mode shapes of the flexure–torsion coupled vibration of the
axially loaded beams with thin-walled monosymmetrical cross-section is developed by using the
general solution of the governing differential equations of motion. This method takes into account
the effects of axial force, warping stiffness, shear deformation and rotatory inertia in a unified
way. Once the natural frequencies and mode shapes are obtained, normal mode method in
conjunction with receptance method is used to compute the mean square displacement response of
the axially loaded thin-walled beam. Finally, the method is illustrated by its application to two
test examples to investigate the effects of warping stiffness, axial force, shear deformation and
rotary inertia on the stochastic response of the thin-walled beams.

2. Free vibration of axially loaded Timoshenko thin-walled beam including warping effect

Under consideration is a thin-walled structure, modelled as an open or closed thin-walled beam
with monosymmetrical cross-section. Considering a uniform and straight thin-walled beam with
length L shown in Fig. 1, it is assumed that the terms associated with secondary warping and
warping inertia which are negligibly small can be discarded. The shear center and centriod of the
thin-walled beam are denoted by s and c; respectively, which are separated by distance yc: In the
right handed Cartesian co-ordinate system in Fig. 1, the x-axis is assumed to coincide with the
elastic axis (i.e., loci of the shear center of the cross-section of the thin-walled beam). The flexural
translation in the z direction and the torsional rotation about the x-axis of the shear center are
denoted by vðx; tÞ and cðx; tÞ; respectively, where x and t denote distance from the origin and time,
respectively. The rotation of the elastic axis due to flexure alone is denoted by yðx; tÞ: A constant
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compression axial force P is assumed to act through the centroid of the cross-section of the thin-
walled beam. P can be positive or negative, so that tension is included. The external excitations
acting on the thin-walled beam are represented by a force f ðx; tÞ per unit length that parallel to sz-
axis and applied to the shear center together with a torque mðx; tÞ per unit length about sx-axis,
respectively.
The damped governing equations of motion for the forced vibration of the axially loaded

Timoshenko thin-walled beam exhibiting flexure–torsion coupling and including warping stiffness
effect can be written as following three coupled differential equations, which may be derived using
Hamilton’s principle (for details of the derivation, see Appendix A)

rI .yþ c3 ’y� EIy00 � kAGðv0 � yÞ ¼ 0; ð1Þ

Is
.c� myc .v þ c2 ’c� c1yc ’v � GJc00 þ PðIsc

00=m� ycv
00Þ þ EGc0000 ¼ mðx; tÞ; ð2Þ

m.v þ c1ð’v � yc
’cÞ � myc

.c� kAGðv00 � y
0
Þ þ Pðv00 � ycc

00Þ ¼ f ðx; tÞ; ð3Þ

where E is Young’s modulus of elasticity of the thin-walled beam material, G is the shear modulus
of the thin-walled beam material. EI ; kGA; GJ and EG are flexural stiffness, shear stiffness,
torsional stiffness and warping stiffness of the thin-walled beam, respectively. m is mass of the
thin-walled beam per unit length, I is the second area moment of inertia of the beam cross-section
about y-axis, Is is polar mass moment of inertia of per unit length thin-walled beam about x-axis,
superscript primes and dots denote the derivative with respect to position x and time t;
respectively. r is the density of the thin-walled beam material, A is the cross-section area of the
thin-walled beam, k is the effective area coefficient in shear. The damping coefficients c1; c2 and c3
are the linear viscous damping terms of per unit length thin-walled beam in flexural deformation,
torsional deformation and rotatory deformation due to flexure, respectively.
For undamped free vibration of axially loaded Timoshenko thin-walled beam, the external

excitations f ðx; tÞ and mðx; tÞ are set to zero, as are the damping coefficients c1; c2 and c3; in order
to determine the natural frequencies and mode shapes of the thin-walled beam. A sinusoidal
variation of vðx; tÞ; yðx; tÞ and cðx; tÞ with circular frequency on is assumed to be of the forms

vðx; tÞ ¼ VnðxÞ sinont; ð4Þ
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yðx; tÞ ¼ YnðxÞ sinont; ð5Þ

cðx; tÞ ¼ CnðxÞ sinont; ð6Þ

where n ¼ 1; 2; 3;y;VnðxÞ; YnðxÞ and CnðxÞ are the amplitudes of the sinusoidally varying
flexural translation, flexural rotation and torsional rotation, respectively.
Substituting Eqs. (4)–(6) into Eqs. (1)–(3) gives the three simultaneous differential equations for

Vn; Yn and Cn:

rIo2
nYn þ EIY00

n þ kGAðV
0

n �YnÞ ¼ 0; ð7Þ

GJC00
n � PðIsC00

n=m� ycV
00
n Þ þ Iso2

nCn � o2
nmycVn � EGC

0000

n ¼ 0; ð8Þ

kGAðY0
n � V 00

n Þ þ PðV 00
n � ycC00

nÞ � mo2
nVn þ myco2

nCn ¼ 0: ð9Þ

After extensive algebra manipulation, Eqs. (7)–(9) can be combined into one equation by either
eliminating all but one of the three variables Vn; Yn and Cn to give the following eighth order
differential equation:

fðd � psdÞD8 þ ð�p2ancs=bn þ pan=bn þ ps þ pd � bndrps þ bndðs þ rÞ � 1ÞD6;

þ ðanrp � p þ bnrps þ p2anc=bn � ancp2rs þ 2ancps � bnðs þ r þ d � bnsrdÞ � anÞD4;

þ ð�2ancp þ 2anbncrps � bnðanr þ bnsr � 1þ ancsÞÞD2 þ ancbnð1� bnrsÞgXn ¼ 0; ð10Þ

where

Xn ¼ Vn; Yn or Cn; D ¼ d=dx; x ¼ x=L; an ¼ Iso2
nL2=GJ ; bn ¼ mo2

nL4=EI ;

c ¼ 1� my2
c=Is; d ¼ EG=GJL2; r ¼ I=AL2; s ¼ EI=kAGL2; p ¼ PL2=EI :

Note that r; s and p above describe the effects of rotatory inertia, shear deformation and axial
force, respectively. Any one or all of these parameters can be set to zero so that corresponding
effect(s) can be optionally ignored.
The solution of the differential equation (10) can be obtained by substituting the trial solution

Xn ¼ eknx to give the characteristic equation

ðd � psdÞk8n þ ð�p2ancs=bn þ pan=bn þ ps þ pd � bndrps þ bndðs þ rÞ � 1Þk6n
þ ðanrp � p þ bnrps þ p2anc=bn � ancp2rs þ 2ancps � bnðs þ r þ d � bnsrdÞ � anÞk4n
þ ð�2ancp þ 2anbncrps � bnðanr þ bnsr � 1þ ancsÞÞk2n þ ancbnð1� bnrsÞ ¼ 0: ð11Þ

Let

wn ¼ k2n: ð12Þ

Substituting Eq. (12) into Eq. (11) gives

ðd � psdÞw4n þ ð�p2ancs=bn þ pan=bn þ ps þ pd � bndrps þ bndðs þ rÞ � 1Þw3n
þ ðanrp � p þ bnrps þ p2anc=bn � ancp2rs þ 2ancps � bnðs þ r þ d � bnsrdÞ � anÞw2n
þ ð�2ancp þ 2anbncrps � bnðanr þ bnsr � 1þ ancsÞÞwn þ ancbnð1� bnrsÞ ¼ 0: ð13Þ
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It can be shown [10] that all four roots of Eq. (13) are real, two of them negative and the other
two positive. Suppose that the four roots are wn1; wn2; �wn3; �wn4; where wnj (j ¼ 1;y; 4) are real
and positive. Then the eight roots of the characteristic Eq. (11) are

an;�an;bn;�bn; ign;�ign; idn;�idn:

where i ¼
ffiffiffiffiffiffiffi
�1

p
and an ¼

ffiffiffiffiffiffi
wn1

p
; bn ¼

ffiffiffiffiffiffi
wn2

p
; gn ¼

ffiffiffiffiffiffi
wn3

p
; dn ¼

ffiffiffiffiffiffi
wn4

p
:

It follows that the solution of the Eq. (10) is of the following form:

VnðxÞ ¼ c�1 cosh anxþ c�2 sinh anxþ c�3 cosh bnxþ c�4 sinh bnx

þ c�5 cos gnxþ c�6 sin gnxþ c�7 cos dnxþ c�8 sin dnx; ð14Þ

CnðxÞ ¼ tn1c
�
1 cosh anxþ tn1c

�
2 sinh anxþ tn2c

�
3 cosh bnxþ tn2c

�
4 sinh bnx

þ tn3c
�
5 cos gnxþ tn3c

�
6 sin gnxþ tn4c

�
7 cos dnxþ tn4c

�
8 sin dnx ð15Þ

YnðxÞ ¼ tn5c
�
2 cosh anxþ tn5c

�
1 sinh anxþ tn6c

�
4 cosh bnxþ tn6c

�
3 sinh bnx

þ tn7c
�
6 cos gnx� tn7c

�
5 sin gnxþ tn8c

�
8 cos dnx� tn8c

�
7 sin dnx; ð16Þ

where c�1 –c�8 is a set of constants which can be determined from the boundary condition, and

tn1 ¼ anð1� cÞðbn � pa2nÞ=ðanbn � anpa2n þ bna2nÞyc;

tn2 ¼ anð1� cÞðbn � pb2nÞ=ðanbn � anpb2n þ bnb
2
nÞyc;

tn3 ¼ anð1� cÞðbn þ pg2nÞ=ðanbn þ anpg2n � bng2nÞyc;

tn4 ¼ anð1� cÞðbn þ pd2nÞ=ðanbn þ anpd2n � bnd
2
nÞyc;

tn5 ¼ an=Lð1� bnrs � a2nsÞ; tn6 ¼ bn=Lð1� bnrs � b2nsÞ;

tn7 ¼ gn=Lð1� bnrs þ g2nsÞ; tn8 ¼ dn=Lð1� bnrs þ d2nsÞ:

Eqs. (14)–(16) in conjunction with the boundary conditions yield the eigenvalues (natural
frequencies) and eigenfunctions (mode shapes) of axially loaded Timoshenko thin-walled beam.
Also based on Eqs. (7)–(9) and the boundary conditions, by following the procedure described in
Ref. [10], the following orthogonality for different mode shapes of the Timoshenko thin-walled
beam can be derived asZ 1

0

fðrIYmYn þ mVmVn þ IsCmCnÞ � mycðVmCn þ VnCmÞg dx ¼ %mndmn; ð17Þ

where %mn is the generalized mass in the nth mode, dmn is the Kronecker delta function.
With the free vibration modes, natural frequencies and orthogonality condition described

above, it is now possible to investigate the general stochastic vibration problem of the damped
axially loaded Timoshenko thin-walled beam.
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3. Stochastic vibration analysis of axially loaded Timoshenko thin-walled beam including warping

For forced stochastic vibration of the axially loaded Timoshenko thin-walled beam, assume
vðx; tÞ; yðx; tÞ; cðx; tÞ can be expanded in terms of the eigenfunctions to give the following three
equations:

vðx; tÞ ¼ vðxL; tÞ ¼
XN
n¼1

qnðtÞVnðxÞ; ð18Þ

cðx; tÞ ¼ cðxL; tÞ ¼
XN
n¼1

qnðtÞCnðxÞ; ð19Þ

yðx; tÞ ¼ yðxL; tÞ ¼
XN
n¼1

qnðtÞYnðxÞ; ð20Þ

where qnðtÞ is the generalized time-dependent co-ordinate for each mode. Substituting Eqs. (18)–(20)
into Eqs. (1)–(3) and using Eqs. (7)–(9) yields

XN
n¼1

½mðVn � ycCnÞ .qn þ c1ðVn � ycCnÞ ’qn þ mo2
nðVn � ycCnÞqn
 ¼ f ðx; tÞ; ð21Þ

XN
n¼1

½rIYn .qn þ c3Yn ’qn þ rIo2
nYnqn
 ¼ 0; ð22Þ

XN
n¼1

½ðIsCn � mycVnÞ .qn þ ðc2Cn � c1VnycÞ ’qn þ o2
nðIsCn � mycVnÞqn
 ¼ mðx; tÞ; ð23Þ

where superscript dot denotes derivative with respect to time.
Multiplying Eqs. (21)–(23) by Vm; Ym and Cm; respectively, then summing up these three

equations and integrating from 0 to 1, and using orthogonality condition (17) gives

.qnðtÞ þ 2znon ’qnðtÞ þ o2
nqnðtÞ ¼ ½FnðtÞ þ MnðtÞ
; ð24Þ

where FnðtÞ and MnðtÞ can be expressed as

FnðtÞ ¼
1

%mn

Z 1

0

VnðxÞf ðx; tÞ dx; MnðtÞ ¼
1

%mn

Z 1

0

CnðxÞmðx; tÞ dx;

zn ¼
c1

2mon

¼
c2

2Ison

¼
c3

2rIon

;

where zn is a non-dimensional quantity known as the viscous damping factor. Here the
assumption c2 ¼ c1Is=m; c3 ¼ c1rI=m has been made to take advantage of the orthogonality
condition (17) in order to avoid having coupling terms ’qn in Eq. (24).
In this paper, the stochastic response of the axially loaded Timoshenko thin-walled beam to

stationary, ergodic stochastic excitations with zero initial conditions is investigated in the
frequency domain by using the receptance method.
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From Eq. (24), the cross-spectral density function Sqnql
ðOÞ of the generalized time-dependent

co-ordinate qnðtÞ is related to the cross-spectral density functions SFnFl
ðOÞ and SMnMl

ðOÞ of the
flexure load FnðtÞ and torsional load MnðtÞ by the following relation:

Sqnql
ðOÞ ¼ H�

n ðOÞ½SFnFl
ðOÞ þ SMnMl

ðOÞ
HlðOÞ; ð25Þ

where HlðOÞ is the receptance

HlðOÞ ¼
1

ðo2
l � O2 þ 2izlOolÞ

;

H�
n ðOÞ is the complex conjugate of HnðOÞ; SFnFl

ðOÞ is the cross-spectral density function
between FnðtÞ and FlðtÞ; SMnMl

ðOÞ is the cross-spectral density function between MnðtÞ and MlðtÞ:
Since it is assumed that the stochastic excitations f ðx; tÞ and mðx; tÞ are stationary in time, then so
are the generalized forces FnðtÞ andMnðtÞ: Furthermore, FnðtÞand MnðtÞ are assumed to be
independent stochastic processes so that the cross-spectral density functions between FnðtÞ and
MnðtÞ can be excluded.
Based on the expressions of the generalized forces FnðtÞ andMnðtÞ; the cross-spectral density

functions SFnFl
ðOÞ and SMnMl

ðOÞ can be obtained explicitly as, respectively

SFnFl
ðOÞ ¼

1

%mn %ml

Z 1

0

Z 1

0

Vnðx1ÞVlðx2ÞSf ðx1; x2;OÞ dx1 dx2;

SMnMl
ðOÞ ¼

1

%mn %ml

Z 1

0

Z 1

0

Cnðx1ÞClðx2ÞSmðx1; x2;OÞ dx1 dx2; ð26Þ

where Sf ðx1; x2;OÞ is the distributed cross-spectral density function between the stochastic flexural
loads f ðx1; tÞ and f ðx2; tÞ; Smðx1; x2;OÞ is the distributed cross-spectral density function between
the stochastic torsional loads mðx1; tÞ and mðx2; tÞ:
For the flexural load f ðx; tÞ and torsional load mðx; tÞ; the corresponding cross-spectral density

functions Sf ðx1; x2;OÞ and Smðx1; x2;OÞ are related to the cross-correlation functions Rf ðx1; x2; tÞ
and Rmðx1; x2; tÞ; respectively, by the following Fourier transform pairs:

Sf ðx1; x2;OÞ ¼
1

2p

Z
N

�N

Rf ðx1; x2; tÞe
�iOt dt; Rf ðx1; x2; tÞ ¼

Z
N

�N

Sf ðx1; x2;OÞe
iOt dO;

Smðx1; x2;OÞ ¼
1

2p

Z
N

�N

Rmðx1; x2; tÞ e
�iOt dt; Rmðx1; x2; tÞ ¼

Z
N

�N

Smðx1; x2;OÞ e
iOt dO: ð27Þ

The cross-correlation functions Rf ðx1; x2; tÞ and Rmðx1; x2; tÞ of the flexural load f ðx; tÞ and
torsional load mðx; tÞ are defined as

Rf ðx1; x2; tÞ ¼ E½f ðx1; tÞf ðx2; t þ tÞ
; Rmðx1; x2; tÞ ¼ E½mðx1; tÞmðx2; t þ tÞ
; ð28Þ

where E½ 
 denotes the ensemble average of the stochastic process.
According to Eqs. (18)–(20), the cross-spectral density functions Svðx1; x2;OÞ; Scðx1; x2;OÞ and

Syðx1; x2;OÞ of the flexural translation vðx; tÞ; torsional rotation cðx; tÞ and flexural rotation yðx; tÞ
can be written as

Svðx1; x2;OÞ ¼
XN
n¼1

XN
l¼1

Vnðx1ÞVlðx2ÞSqnql
; ð29Þ
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Scðx1; x2;OÞ ¼
XN
n¼1

XN
l¼1

Cnðx1ÞClðx2ÞSqnql
; ð30Þ

Syðx1; x2;OÞ ¼
XN
n¼1

XN
l¼1

Ynðx1ÞYlðx2ÞSqnql
: ð31Þ

Substitution of Eq. (25) into Eqs. (29)–(31) gives

Svðx1; x2;OÞ ¼
XN
n¼1

XN
l¼1

Vnðx1ÞVlðx2ÞH
�
n ðOÞHlðOÞ½SFnFl

ðOÞ þ SMnMl
ðOÞ
; ð32Þ

Scðx1; x2;OÞ ¼
XN
n¼1

XN
l¼1

Cnðx1ÞClðx2ÞH
�
n ðOÞHlðOÞ½SFnFl

ðOÞ þ SMnMl
ðOÞ
; ð33Þ

Syðx1; x2;OÞ ¼
XN
n¼1

XN
l¼1

Ynðx1ÞYlðx2ÞH
�
n ðOÞHlðOÞ½SFnFl

ðOÞ þ SMnMl
ðOÞ
: ð34Þ

Now, substituting Eq. (26) into Eqs. (32)–(34), one obtains

Svðx1; x2;OÞ ¼
XN
n¼1

XN
l¼1

h�n ðOÞhlðOÞZnlðOÞVnðx1ÞVlðx2Þ; ð35Þ

Scðx1; x2;OÞ ¼
XN
n¼1

XN
l¼1

h�n ðOÞhlðOÞZnlðOÞCnðx1ÞClðx2Þ; ð36Þ

Syðx1; x2;OÞ ¼
XN
n¼1

XN
l¼1

h�n ðOÞhlðOÞZnlðOÞYnðx1ÞYlðx2Þ; ð37Þ

where hlðOÞ ¼ 1=½ %mlðo2
l � O2 þ 2izlolOÞ
:

ZnlðOÞ ¼
Z 1

0

Z 1

0

fVnðx1ÞVlðx2ÞSf ðx1; x2;OÞ þCnðx1ÞClðx2ÞSmðx1; x2;OÞg dx1 dx2:

For x1 ¼ x2 ¼ x; the cross-spectral density functions Svðx1; x2;OÞ; Scðx1; x2;OÞ and Syðx1; x2;OÞ
reduce to the spectral density functions Svðx;OÞ; Scðx;OÞ and Syðx;OÞ:

Svðx;OÞ ¼
XN
n¼1

XN
l¼1

h�n ðOÞhlðOÞZnlðOÞVnðxÞVlðxÞ; ð38Þ

Scðx;OÞ ¼
XN
n¼1

XN
l¼1

h�n ðOÞhlðOÞZnlðOÞCnðxÞClðxÞ; ð39Þ

Syðx;OÞ ¼
XN
n¼1

XN
l¼1

h�n ðOÞhlðOÞZnlðOÞYnðxÞYlðxÞ: ð40Þ

ARTICLE IN PRESS

J. Li et al. / Journal of Sound and Vibration 274 (2004) 915–938 923



The mean square values of the flexural translation, torsional rotation and flexural rotation can
be found by integrating the corresponding spectral density functions over all frequencies

E½v2ðx; tÞ
 ¼
Z

N

�N

Svðx;OÞ dO; ð41Þ

E½c2ðx; tÞ
 ¼
Z

N

�N

Scðx;OÞ dO; ð42Þ

E½y2ðx; tÞ
 ¼
Z

N

�N

Syðx;OÞ dO: ð43Þ

If the external stochastic excitations are assumed to follow the Gaussian probability
distribution, the response probability will also be Gaussian, and therefore the response can be
fully described by its spectral density function.
As an example, two kinds of loads are considered here as applied on the thin-walled beam. The

first one is that there is only one stochastic varying concentrated flexural load acting on the thin-
walled beam at x ¼ xf : In this case, ZnlðOÞ in Eqs. (35)–(37) can be simplified as

ZnlðOÞ ¼ Vnðxf ÞVlðxf ÞSf ðOÞ: ð44Þ

The spectral density functions of the flexural translation, torsional rotation and flexural
rotation are then given by Eqs. (38)–(40) as

Svðx;OÞ ¼
XN
n¼1

XN
l¼1

h�n ðOÞVnðxÞVnðxf ÞhlðOÞVlðxÞVlðxf ÞSf ðOÞ

¼
XN
l¼1

hlðOÞVlðxÞVlðxf Þ

�����
�����
2

Sf ðOÞ; ð45Þ

Scðx;OÞ ¼
XN
n¼1

XN
l¼1

h�n ðOÞCnðxÞVnðxf ÞhlðOÞClðxÞVlðxf ÞSf ðOÞ

¼
XN
l¼1

hlðOÞClðxÞVlðxf Þ

�����
�����
2

Sf ðOÞ; ð46Þ

Syðx;OÞ ¼
XN
n¼1

XN
l¼1

h�n ðOÞYnðxÞVnðxf ÞhlðOÞYlðxÞVlðxf ÞSf ðOÞ

¼
XN
l¼1

hlðOÞYlðxÞVlðxf Þ

�����
�����
2

Sf ðOÞ: ð47Þ

The next type of load consists of only distributed flexural load acting on the thin-walled beam,
and the stochastic varying load is assumed to be following form:

f ðx; tÞ ¼ f ðxÞgðtÞ; ð48Þ
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where gðtÞ is a stochastic process. Note the load considered here is stochastic with respect to time
only. The extension to cover spatially varying stochastic load is easy.
The cross-correlation function for the above flexural load is given by

Rf ðx1; x2; tÞ ¼ E½f ðx1ÞgðtÞf ðx2Þgðt þ tÞ
 ¼ f ðx1Þf ðx2ÞRgðtÞ: ð49Þ

The corresponding cross-spectral density function is

Sf ðx1; x2;OÞ ¼ f ðx1Þf ðx2ÞSgðOÞ: ð50Þ

In this case ZnlðOÞ simplifies to

ZnlðOÞ ¼
Z 1

0

f ðx1ÞVnðx1Þ dx1

Z 1

0

f ðx2ÞVlðx2Þ dx2SgðOÞ ¼ fnflSgðOÞ: ð51Þ

The spectral density functions of the flexural translation, torsional rotation and flexural
rotation are then expressed as

Svðx;OÞ ¼
XN
l¼1

hlðOÞflVlðxÞ

�����
�����
2

SgðOÞ; ð52Þ

Scðx;OÞ ¼
XN
l¼1

hlðOÞflClðxÞ

�����
�����
2

SgðOÞ; ð53Þ

Syðx;OÞ ¼
XN
l¼1

hlðOÞflYlðxÞ

�����
�����
2

SgðOÞ: ð54Þ

4. Numerical results and discussions

Some numerical results are given to demonstrate the theoretical formulations derived in last
section, which can be directly applied to compute the stochastic response of the axially loaded
Timoshenko thin-walled beam.
The first example is a cantilever thin-walled beam with monosymmetrical semi-circular cross-

section. The geometrical and physical properties of the thin-walled beam shown in Fig. 2
are given as follows: I ¼ 9:26� 10�8 m4, J ¼ 1:64� 10�9 m4, Is ¼ 0:000501 kgm, yc ¼ 0:0155m,
L ¼ 0:82m, G ¼ 1:52� 10�12 m6, m ¼ 0:835 kgm�1, E ¼ 68:9� 109 Nm�2, G ¼ 26:5� 109 Nm�2,
k ¼ 0:5; A ¼ 3:08� 10�4 m2, r ¼ 2711:04kgm�3, P ¼ 1790N.
The natural frequencies and mode shapes of the above axially loaded thin-walled beam for

undamped free vibration are computed by setting the damping coefficients c1; c2; c3 and the
external excitations f ðx; tÞ and mðx; tÞ in Eqs. (1)–(3) to zero. The first five natural frequencies of
the axially loaded semi-circular section thin-walled beam are shown in Table 1. The corresponding
first five normal mode shapes are shown in Figs. 3–5. The first five normal mode shapes with the
warping stiffness ignored are shown in Figs. 3(a)–(e). The first five normal mode shapes with the
Timoshenko effect omitted are shown in Figs. 4(a)–(e). The first five normal mode shapes
including the warping stiffness and Timoshenko effect are shown in Figs. 5(a)–(e). All the first five
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normal modes are coupled modes, i.e., the modes show coupling between flexural displacement
and torsional displacement, although they are dominant torsional modes. The first four mode
shapes ignoring the warping stiffness or Timoshenko effect are similar to the ones accounting for
the warping stiffness and Timoshenko effect, although there is some difference between them. The
fifth mode ignoring the Timoshenko effect is similar to the one accounting for the warping
stiffness and Timoshenko effect.
Based on the natural frequencies and mode shapes, the mean square values of the flexural

translation, flexural rotation and torsional rotation due to a stochastic varying concentrated
flexural load can be computed without any difficulty. The stochastic flexural load is assumed to be
an ideal white noise, so the Sf ðoÞ in Eqs. (45)–(47) can be replaced by a constant, i.e., Sf ðoÞ ¼ S0

(S0 is a constant). In Figs. 6–8, respectively, are shown the mean square parameters of flexural
translation, flexural rotation and torsional rotation along the length of the cantilever thin-walled
beam subjected to an ideal white noise concentrated flexural load acting at the tip of the beam.
The value of the damping coefficient used in computation is 0.01. The mean square flexural
translation accounting for the Timoshenko effect is only a little different from the one excluding
the Timoshenko effect. But the effect of Timoshenko on the flexural rotation and torsional

ARTICLE IN PRESS

Table 1

Natural frequencies of the cantilever semi-circular section beam with P ¼ 1790N

Frequency order Natural frequency (Hz)

Only warping

ignored

Only axial

force ignored

Only Timoshenko

effect ignored

No factors

ignored

1 59.97 63.50 61.31 61.03

2 128.12 137.38 136.15 135.86

3 256.00 275.81 275.03 272.47

4 413.07 481.09 479.40 475.72

5 598.55 639.75 661.37 637.36

s c y

z

0.0155m 

0.0245m 

0.004m

Fig. 2. Beam cross-section used in numerical example 1.
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rotation is noticeable. The mean square flexural and torsional displacements including the
warping stiffness are remarkably different from the ones excluding the warping stiffness, as can be
seen from Figs. 6–8. Compared to the effects of Timoshenko and warping stiffness, the axial force
has a more significantly effect on the mean square flexural and torsional displacements. The
percentage errors for mean square values of the flexural and torsional response at the tip of the
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Fig. 3. First five normal mode shapes of example 1 excluding the effect of warping stiffness: (a) mode 1; (b) mode 2;

(c) mode 3; (d) mode 4; (e) mode 5.
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cantilever thin-walled beam without the warping stiffness or Timoshenko effect or axial force
included are shown in Table 2. The numerical results show that it is necessary to consider the
effects of the axial force, warping stiffness and Timoshenko in order to obtain the mean square
displacement response accurately.
A cantilever thin-walled uniform beam with a monosymmetrical channel cross-section is

considered next. The geometrical properties and physical properties of the beam shown in Fig. 9
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Fig. 4. First five normal mode shapes of example 1 excluding the Timoshenko effect: (a) mode 1; (b) mode 2;

(c) mode 3; (d) mode 4; (e) mode 5.
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are given below: I ¼ 1:449� 10�3 m4; J ¼ 1:223� 10�5 m4; Is ¼ 56:87 kgm; yc ¼ 0:336m; L ¼
3:2 m; G ¼ 3:885� 10�5 m6; m ¼ 225 kgm-1; E ¼ 2:1� 1011 Nm�2; G ¼ 8� 1010 Nm�2; k ¼
0:5136; A ¼ 0:012856m2; r ¼ 17501:6 kgm�3; P ¼ 1:85� 106 N:
The first five natural frequencies of the axially loaded channel section thin-walled beam are

shown in Table 3. The corresponding mode shapes of the first five normal modes with an axial
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Fig. 5. First five normal mode shapes of example 1 including the warping stiffness and Timoshenko effect: (a) mode 1;

(b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5.
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force P ¼ 1:85� 106 N are plotted in Figs. 10–12. The first five normal mode shapes disregarding
the warping stiffness effect are plotted in Figs. 10(a)–(e). The first five normal mode shapes with
the Timoshenko effect ignored are plotted in Figs. 11(a)–(e). The first five normal mode shapes
taking into account the effects of warping stiffness and Timoshenko are plotted in Figs. 12(a)–(e).
It can be seen from Fig. 10 that the first five normal modes omitting the effect of warping stiffness
are absolutely dominant torsional modes. The warping stiffness and Timoshenko effect make
great difference to all of the first five mode shapes. It can be seen from Figs. 11 and 12 that all of
the first five modes are coupled modes. The mode 1, mode 3, mode 4 are dominant torsional
modes when the Timoshenko effect is excluded, and the mode 2 and mode 5 excluding the
Timoshenko effect are strongly coupled modes. When the warping stiffness and Timoshenko
effect are considered, the mode 1, mode 2 and mode 3 are dominant torsional modes, but the
mode 4 and mode 5 are strongly coupled modes.
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Fig. 6. Mean square flexural translation along the length of the cantilever thin-walled beam.

Fig. 7. Mean square flexural rotation along the length of the cantilever thin-walled beam.
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Fig. 8. Mean square torsional rotation along the length of the cantilever thin-walled beam.

Table 2

Percentage errors for mean square values of the flexural and torsional response at the tip of the cantilever thin-walled

beam

Warping ignored (%) Timoshenko ignored (%) Axial force ignored (%)

Flexural translation 22.88 2.54 �28.05

Flexural rotation 22.38 7.18 �29.56

Torsional rotation 6.61 �15.97 �39.52

0.5m 

y

z

s c
0.8m 

0.05m 

0.5m 

Fig. 9. Beam cross-section used in numerical example 2.
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According to the procedure discussed before, the stochastic response of the above axially
loaded thin-walled beam can be computed without any difficulty based on the natural frequencies
and mode shapes. To compare the results obtained from the present theory including the effects of
warping stiffness, Timoshenko and axial force with those given by the theory excluding the effect
of warping stiffness or Timoshenko effect or axial force effect, the mean square values of the
flexural translation, flexural rotation and torsional rotation due to a stochastic varying
concentrated flexural load are calculated. In Figs. 13–15, respectively, are shown the mean
square parameters of the flexural translation, flexural rotation and torsional rotation along the
length of the channel section thin-walled beam subjected to an ideal white noise concentrated
flexural load acting at the tip of the beam. The value of the damping coefficient has been taken as
0.01. It can be seen from Figs. 13–15, the mean square values of the flexural displacement and
torsional displacement predicted by the present theory considering the effects of axial force,
Timoshenko and warping stiffness are distinctly different from those obtained from the theory
excluding the effect of axial force or warping stiffness or Timoshenko effect. So, it is absolutely
necessary to include the effects of axial force, warping stiffness and Timoshenko effect when the
mean square displacements of this particular thin-walled beam are computed. The percentage
errors for mean square values of the flexural and torsional response at the tip of the cantilever
thin-walled beam without the warping stiffness or Timoshenko effect or axial force included are
shown in Table 4.

5. Conclusions

A method has been presented to perform the stochastic response analysis of the axially loaded
Timoshenko thin-walled beam. The thin-walled beam is assumed to be uniform, straight, damped,
and subjected to an axial force. The effects of shear deformation, rotatory inertia and warping
stiffness, which are usually important for open cross-section thin-walled beam, are included in the
present formulations. Once the natural frequencies and mode shapes of the axially loaded thin-
walled beam are obtained, mode superposition method in conjunction with receptance method is
used to compute the stochastic response of the beam such as the flexural displacement and
torsional displacement. Although the illustrative examples given in this paper are that of two
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Table 3

Natural frequencies of the cantilever channel section beam with P ¼ 1:85� 106N

Frequency order Natural frequency (Hz)

Only warping

ignored

Only axial

force ignored

Only Timoshenko

effect ignored

No factors

ignored

1 7.30 23.78 22.05 21.82

2 21.91 77.24 87.99 76.74

3 36.81 124.77 128.88 122.25

4 51.55 295.25 356.37 293.84

5 66.32 334.87 549.21 333.32
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simple thin-walled beams, the developed theory can be applied to other types of boundary
conditions of the thin-walled beams or beam assemblages and can be used to other kinds of
stochastic excitations.
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Fig. 10. First five normal mode shapes of example 2 without the warping stiffness included: (a) mode 1; (b) mode 2;

(c) mode 3; (d) mode 4; (e) mode 5.
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Appendix A

The damped governing equations of motion for the forced vibration of the axially loaded
Timoshenko thin-walled beam exhibiting flexure–torsion coupling and including warping stiffness
effect can be derived using the Hamilton’s principle as follows.
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Fig. 11. The first five normal mode shapes of example 2 excluding the Timoshenko effect: (a) mode 1; (b) mode 2;

(c) mode 3; (d) mode 4; (e) mode 5.

J. Li et al. / Journal of Sound and Vibration 274 (2004) 915–938934



The total strain energy U of an axially loaded Timoshenko thin-walled beam shown in Fig. 1 is
given by

U ¼
1

2

Z L

0

fEIðy
0
Þ2 � P½ðv0Þ2 � 2ycv

0c0 þ ðIs=mÞðc
0Þ2
 þ kAGðv0 � yÞ2 þ EGðc00Þ2 þ GJðc0Þ2g dx;

ðA:1Þ

where all the variables and symbols are defined in Section 2.
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Fig. 12. The first five normal mode shapes of example 2 including the warping stiffness and Timoshenko effect:

(a) mode 1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5.

J. Li et al. / Journal of Sound and Vibration 274 (2004) 915–938 935



ARTICLE IN PRESS

Fig. 13. Mean square flexural translation along the length of the cantilever thin-walled beam.

Fig. 14. Mean square flexural rotation along the length of the cantilever thin-walled beam.

Fig. 15. Mean square torsional rotation along the length of the cantilever thin-walled beam.
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The total kinetic energy T of an axially loaded Timoshenko thin-walled beam is given by

T ¼
1

2

Z L

0

½mð’v2 � 2yc ’v ’cÞ þ Is
’c2 þ rI ’y2
 dx: ðA:2Þ

The governing equations of motion and the boundary conditions can be derived conveniently
by means of Hamilton’s principle, which can be stated in the formZ t2

t1

ðdT � dU þ dW Þ dt ¼ 0; ðA:3Þ

dv ¼ dy ¼ dc ¼ dc0 ¼ 0 at t ¼ t1; t2:
Herein T is the kinetic energy, U the potential energy, dW the virtual work of the non-

conservative forces, which can be written as

dW ¼
Z L

0

½f ðx; tÞdv þ mðx; tÞdc� c1ð’v � yc
’cÞdv � ðc2 ’c� c1yc ’vÞdc� c3 ’ydy
 dx: ðA:4Þ

Substituting Eqs. (A.1), (A.2) and (A.4) into Eq. (A.3) and carrying out the usual steps yield the
governing equations of motion and the boundary conditions.
(a) The governing equations of motion

m.v � myc
.cþ Pv00 � Pycc

00 � kAGv00 þ kAGy0 þ c1ð’v � yc
’cÞ ¼ f ðx; tÞ; ðA:5Þ

Is
.c� myc .v � Pycv

00 þ PðIs=mÞc
00 þ EGc

0000
� GJc

00
þ ðc2 ’c� c1yc ’vÞ ¼ mðx; tÞ; ðA:6Þ

rI .y� EIy00 � kAGv0 þ kAGyþ c3 ’y ¼ 0: ðA:7Þ

(b) The boundary conditions at the ends (x ¼ 0;L)

ðPv0 � Pycc
0 � kAGv0 þ kAGyÞdv ¼ 0; ðA:8Þ

ð�Pycv
0 þ Pc0Is=mþ EGc

000
� GJc0Þdc ¼ 0; ðA:9Þ

ð�EIy0Þdy ¼ 0; ðA:10Þ

ð�EGc00Þdc0 ¼ 0: ðA:11Þ
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Table 4

Percentage errors for mean square values of the flexural and torsional response at the tip of the cantilever thin-walled

beam

Warping ignored (%) Timoshenko ignored (%) Axial force ignored (%)

Flexural translation 29.67 �35.79 25.27

Flexural rotation 27.23 �4.80 25.00

Torsional rotation �2.02 �41.41 16.16
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